Don't know if here is the best place but i'm in despair. I have this flashloan code:
pragma solidity ^0.6.6;
import "@aave/protocol-v2/contracts/flashloan/base/FlashLoanReceiverBase.sol";
import "@aave/protocol-v2/contracts/interfaces/ILendingPoolAddressesProvider.sol";
import "@aave/protocol-v2/contracts/interfaces/ILendingPool.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import {SafeERC20} from "@aave/protocol-v2/contracts/dependencies/openzeppelin/contracts/SafeERC20.sol";
//import "@openzeppelin/contracts/interfaces/IERC20.sol";
contract FlashloanV2 is FlashLoanReceiverBase {
using SafeERC20 for IERC20;
constructor(
ILendingPoolAddressesProvider _addressProvider,
address _routerA,
address _routerB,
address _token,
address _WETH
) public FlashLoanReceiverBase(_addressProvider)
{
owner = msg.sender;
routerA = _routerA;
routerB = _routerB;
token = _token;
WETH = _WETH;
}
address owner;
address routerA;
address routerB;
address token;
address WETH;
modifier onlyOwner{
require(msg.sender == owner, "Hey hey hey you can't use this function");
_;
}
/**
* @dev This function must be called only be the LENDING_POOL and takes care of repaying
* active debt positions, migrating collateral and incurring new V2 debt token debt.
*
* @param assets The array of flash loaned assets used to repay debts.
* @param amounts The array of flash loaned asset amounts used to repay debts.
* @param premiums The array of premiums incurred as additional debts.
* @param initiator The address that initiated the flash loan, unused.
* @param params The byte array containing, in this case, the arrays of aTokens and aTokenAmounts.
*/
function executeOperation(
address[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata premiums,
address initiator,
bytes calldata params
) external override returns (bool) {
//
// This contract now has the funds requested.
// Your logic goes here.
//
address[] memory path = new address[](2);
path[0] = token;
path[1] = WETH;
address[] memory path2 = new address[](2);
path2[0] = WETH;
path2[1] = token;
uint balance = address(this).balance;
IERC20(WETH).approve(routerA, balance);
IUniswapV2Router02(routerA).swapExactTokensForTokensSupportingFeeOnTransferTokens(
balance,
0,
path2,
address(this),
block.timestamp + 1200
);
uint tokenBalance = IERC20(token).balanceOf(address(this));
IERC20(token).approve(routerB, tokenBalance);
IUniswapV2Router02(routerB).swapExactTokensForTokensSupportingFeeOnTransferTokens(
tokenBalance,
0,
path,
address(this),
block.timestamp + 1200
);
//payable(owner).transfer(address(this).balance - (amounts[0] + premiums[0]));
// At the end of your logic above, this contract owes
// the flashloaned amounts + premiums.
// Therefore ensure your contract has enough to repay
// these amounts.
// Approve the LendingPool contract allowance to *pull* the owed amount
for (uint256 i = 0; i < assets.length; i++) {
uint256 amountOwing = amounts[i].add(premiums[i]);
IERC20(assets[i]).approve(address(LENDING_POOL), amountOwing);
}
return true;
}
function _flashloan(address[] memory assets, uint256[] memory amounts)
internal
{
address receiverAddress = address(this);
address onBehalfOf = address(this);
bytes memory params = "";
uint16 referralCode = 0;
uint256[] memory modes = new uint256[](assets.length);
// 0 = no debt (flash), 1 = stable, 2 = variable
for (uint256 i = 0; i < assets.length; i++) {
modes[i] = 0;
}
LENDING_POOL.flashLoan(
receiverAddress,
assets,
amounts,
modes,
onBehalfOf,
params,
referralCode
);
}
/*
* Flash multiple assets
*/
function flashloan(address[] memory assets, uint256[] memory amounts)
public
onlyOwner
{
_flashloan(assets, amounts);
}
/*
* Flash loan 100000000000000000 wei (0.1 ether) worth of `_asset`
*/
function flashloan(address _asset) public onlyOwner {
bytes memory data = "";
uint256 amount = 50 ether;
address[] memory assets = new address[](1);
assets[0] = _asset;
uint256[] memory amounts = new uint256[](1);
amounts[0] = amount;
_flashloan(assets, amounts);
}
event LogWithdraw(
address indexed _from,
address indexed _assetAddress,
uint amount
);
/**
* @dev Withdraw asset.
* @param _assetAddress Asset to be withdrawn.
*/
function withdraw(address _assetAddress) public onlyOwner {
uint assetBalance;
if (_assetAddress == WETH) {
address self = address(this); // workaround for a possible solidity bug
assetBalance = self.balance;
payable(msg.sender).transfer(assetBalance);
} else {
assetBalance = IERC20(_assetAddress).balanceOf(address(this));
IERC20(_assetAddress).safeTransfer(msg.sender, assetBalance);
}
emit LogWithdraw(msg.sender, _assetAddress, assetBalance);
}
function setter(address _routerA, address _routerB, address _token) external onlyOwner returns(bool){
routerA = _routerA;
routerB = _routerB;
token = _token;
return true;
}
function returnOwner() external view returns(address){
return owner;
}
function returnToken() external view returns(address){
return token;
}
function returnWETH() external view returns(address){
return WETH;
}
fallback() external payable {}
}
I'm receiving SafeERC20: low-level call failed
when calling flashloan()
. There's something wrong with my approving logic?